Exercise 19

A vibrometer is to be designed that withstands the heating effects of its spherical enclosure of diameter d, which is buried to a depth $d / 3$ in the earth, the upper portion being heated by the sun (assume the surface is flat). Heat conduction analysis requires a description of the buried portion of the enclosure in spherical coordinates. Find it.

Solution

Consider a random point in the buried portion of the enclosure.

The points with the lowest and highest radii are shown below.

Use trigonometry to relate the sides of the triangle above.

$$
\begin{aligned}
\cos (\pi-\phi) & =\frac{d / 6}{\rho_{\text {shortest }}} \\
& =\frac{d}{6 \rho_{\text {shortest }}}
\end{aligned}
$$

Solve for $\rho_{\text {shortest }}$.

$$
\begin{aligned}
\rho_{\text {shortest }} & =\frac{d}{6 \cos (\pi-\phi)} \\
& =\frac{d}{6(\cos \pi \cos \phi+\sin \pi \sin \phi)} \\
& =\frac{d}{-6 \cos \phi}
\end{aligned}
$$

$\rho_{\text {longest }}$ is just half the diameter. Therefore,

$$
-\frac{d}{6 \cos \phi} \leq \rho \leq \frac{d}{2} .
$$

The azimuthal angle goes all the way around, so

$$
0 \leq \theta \leq 2 \pi .
$$

Draw the points with the lowest and highest polar angles.

$$
\left(\frac{d}{2}, \theta, \phi_{\text {largest }}\right)
$$

Use trigonometry to determine the shortest value of ϕ, ϕ_{S}.

$$
\cos \left(\pi-\phi_{S}\right)=\frac{d / 2}{d / 6} \quad \rightarrow \quad \cos \left(\pi-\phi_{S}\right)=\frac{1}{3} \quad \rightarrow \quad \pi-\phi_{S}=\cos ^{-1}\left(\frac{1}{3}\right)
$$

Solve for ϕ_{S}.

$$
\phi_{S}=\pi-\cos ^{-1}\left(\frac{1}{3}\right)
$$

The largest value of ϕ is just π. Therefore,

$$
\pi-\cos ^{-1}\left(\frac{1}{3}\right) \leq \phi \leq \pi
$$

